Electrosprayed Molybdenum Trioxide Aqueous Solution and Its Application in Organic Photovoltaic Cells
نویسندگان
چکیده
A molybdenum trioxide thin film with smooth surface and uniform thickness was successfully achieved by an electrospray deposition method using an aqueous solution with a drastically low concentration of 0.05 wt%. Previous papers demonstrated that an additive solvent technique is useful for depositing the thin film by the electrospray deposition, and the high vapor pressure and a low surface tension of an additive solvent were found to be important factors. As a result, the smooth molybdenum trioxide thin film was obtained when the acetonitrile was used as the additive solvent. Furthermore, the vapor pressure of acetone is much higher than that of aqueous solution, and this indicates that the acetone is easily evaporated after spraying from the glass capillary. By optimizing a concentration of acetone in the molybdenum aqueous solution, a minimum root mean square roughness of the MoO3 thin film became 3.7 nm. In addition, an organic photovoltaic cell was also demonstrated using the molybdenum trioxide as a hole transport layer. Highest photoconversion efficiency was 1.72%, a value comparable to that using conventional thermal evaporation process even though the aqueous solution was used for the solution process. The photovonversion efficiency was not an optimized value, and the higher value can be achieved by optimizing the coating condition of the active layer.
منابع مشابه
Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells.
Graphene has been proposed as a promising transparent conducting electrode material in organic photovoltaic (OPV) solar cells to substitute the widely used indium tin oxide (ITO). Various studies have reported OPV devices with graphene electrodes showing comparable performances to ITO-based OPV cells. However, the fabrication reliability or device yield has not been widely discussed. In our inv...
متن کاملPhotovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers
Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insert...
متن کاملSolution-processed nanocomposites containing molybdenum oxide and gold nanoparticles as anode buffer layers in plasmonic-enhanced organic photovoltaic devices.
Solution-processed nanocomposites containing molybdenum oxide (MoO3) and gold nanoparticles (Au NPs) have been used as anode buffer layers in organic photovoltaic devices (OPVs). The resulting devices exhibit a remarkable enhancement in power conversion efficiency after Au NPs were incorporated into the device. Such enhancements can be attributed to the localized surface plasmon resonance induc...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملStudying the toxicity of molybdenum trioxide nanoparticles in male Wister rats
Background: With the spread of nanotechnology, various nanoparticles with new and emerging properties have been produced and the potential toxic effects of the majority of these particles remains still unknown. The present study was conducted to determine the toxicity of Molybdenum Trioxide nanoparticles in blood and body tissues of male Wistar rats. Materials and Methods: Thirty Wistar rats w...
متن کامل